Integración por sustitución o cambio de variable
El método de integración por sustitución o cambio de variable se basa en la derivada de la función compuesta.
Para cambiar de variable identificamos una parte de lo que se va a integrar con una nueva variable t, de modo que se obtenga una integral más sencilla.
Pasos para integrar por cambio de variable
1º Se hace el cambio de variable y se diferencia en los dos términos:
Se despeja u y dx, sutituyendo en la integral:
2º Si la integral resultante es más sencilla, integramos:
3º Se vuelve a la variable inical:
Ejemplo
EJEMPLOS EN VIDEOS:
INTEGRACION POR PARTES
El método de integración por partes permite calcular la integral de un producto de dos funciones aplicando la fórmula:
Las funciones logarítmicas, "arcos" y polinómicas se eligen como u.
Las funciones exponenciales y trígonométricas del tipo seno y coseno, se eligen como v'.
Ejemplos
Si al integrar por partes tenemos un polinomio de grado n, lo tomamos como u y se repite el proceso n veces.
Si tenemos una integral con sólo un logaritmo o un "arco", integramos por partes tomando: v' = 1.
Sigamos este ejemplo en video
Nos vemos en la próxima entrada...............
No hay comentarios:
Publicar un comentario